Exam - Statistics (WBMA009-05) 2020/2021

Date and time: November 2, 2020, 16.00-18.00h **Place**: A. Jacobshal 02

Rules to follow:

- This is a closed book exam. Consultation of books and notes is **not** permitted. You can use a simple (non-programmable) calculator.
- Do not forget to write your name and student number onto each paper sheet. There are 2 exercises and you can reach 90 points. ALWAYS include the relevant equation(s) and/or short descriptions.
- We wish you success with the completion of the exam!

START OF EXAM

1. Sample from the Exponential distribution. 40 Consider a random sample from the Exponential distribution with parameter $\theta > 0$,

$$X_1,\ldots,X_n\sim \mathrm{EXP}(\theta)$$

The density and cumulative distribution function of the $EXP(\theta)$ distribution are

$$f_{\theta}(x) = \theta \cdot e^{-\theta x}$$
 $(x \ge 0)$ and $F_{\theta}(x) = 1 - e^{-\theta x}$ $(x \ge 0)$

- (a) Provide a sufficient statistic for θ . [5]
- (b) Derive the Method of Moments (MM) estimator $\boxed{2}$ and show that the Maximum Likelihood (ML) estimator is $\hat{\theta}_{ML} = \frac{n}{\sum_{i=1}^{n} X_i}$. $\boxed{2}$

Confirm via the 2nd derivative that $\hat{\theta}_{ML}$ is really a maximum point. 1

- (c) Show that the expected Fisher information (for n = 1) is $I(\theta) = \frac{1}{\theta^2}$. 5
- (d) Give the asymptotic distribution of the ML estimator. 5
- (e) Assume n = 25 and the mean realization: $\bar{X}_{25} = 4$. Use your result from (d) to derive an **asymptotic** 2-sided 90% confidence interval for θ . 5
- (f) Assume n = 25 and the testproblem $H_0: \theta = 0.5 \underline{vs.} H_1: \theta \neq 0.5$. Based on your result from (d), for which realisations \overline{X}_{25} would you reject H_0 to the level $\alpha = 0.05$? 5
- (g) Give an equation for the q_{α} quantile of the EXP(θ) distribution. 5
- (h) Assume n = 1 and the realization: $x_1 = 4$. Use your result from (g) to derive an **exact** 2-sided 90% confidence interval for θ . 5

HINTS:

(1) For $X \sim \text{EXP}(\theta)$ we have: $E[X] = \frac{1}{\theta}$ and $V(X) = \frac{1}{\theta^2}$.

(2) The Exponential distribution fulfills all regulatory conditions required for the asymptotic efficiency of the ML estimator.

(3) A table with quantiles of the standard Gaussian distribution is provided below.

2. Sample from the Gaussian distribution 50

We consider a sample from a Gaussian distribution: $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$ with density:

$$f_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{\sigma} \cdot \exp\left\{-\frac{1}{2} \cdot \frac{(x-\mu)^2}{\sigma^2}\right\} \qquad (x \in \mathbb{R})$$

We further assume that we know that $\mu = 0$, while $\sigma^2 > 0$ is an unknown parameter.

- (a) Show that $\sum_{i=1}^{n} X_i^2$ is a sufficient statistic for σ^2 . 5
- (b) Compute the Maximum Likelihood (ML) estimator of σ^2 . |5|Check via the 2nd derivative whether you really have a maximum point. 5

Consider the simple test problem: $H_0: \sigma^2 = 1 \ \underline{vs}: \ H_1: \sigma^2 = 4.$

- (c) Compute the corresponding density ratio $W(X_1, \ldots, X_n) := \frac{f_{0,1}(X_1, \ldots, X_n)}{f_{0,4}(X_1, \ldots, X_n)}$. 5
- (d) Assume n = 5 and give the rejection region of the uniform most powerful (UMP) test to the level $\alpha = 0.05$.

Would the realization $\sum_{i=1}^{5} X_i^2 = 10$ lead to a rejection of H_0 ? 5

- (e) Indicate how to compute the power of the UMP test at $\sigma^2 = 4$. Given the quantiles below, explain why the power is in between 0.5 and 0.9. 5
- (f) Assume n = 5 and the realization: $W(X_1, \ldots, X_5) = 0.3$. Check whether H_0 can be rejected to the test level $\alpha = 0.05$. 5

Now consider the more general test problem: $H_0: \sigma^2 = 1 \underline{vs}: H_1: \sigma^2 \neq 1$.

- (g) Show that the corresponding likelihood ratio test (LRT) statistic is of the form $\lambda(X_1,\ldots,X_n) = \{\hat{\sigma}_{ML}^2\}^a \cdot \exp\{-a \cdot \hat{\sigma}_{ML}^2 + a\}, \text{ where } a > 0 \text{ is a constant. } 5$
- (h) For the sample size n = 5 give the two-sided rejection region of the LRT to the test level $\alpha = 0.1$. |10

HINTS:

(1) For $X_1, \ldots, X_n \sim \mathcal{N}(0, 1) \Rightarrow X_1^2 + \ldots + X_n^2 \sim \chi_n^2$. (2) A table with quantiles of the χ_5^2 distribution is provided below.

(3) For a > 0 the function $f(x) = x^a \cdot e^{-ax}$ is monotonically increasing for 0 < x < 1and monotonically decreasing for x > 1.

α	0.025	0.05	0.1	0.5	0.9	0.95	0.975
$\mathcal{N}(0,1)$	-1.96	-1.64	-1.28	0	1.28	1.64	1.96
χ_5^2	0.83	1.15	1.61	4.35	9.24	11.07	12.83

Table 1: Quantiles q_{α} of the $\mathcal{N}(0,1)$ and the χ_5^2 distribution.