Exam - Statistics (WBMA009-05) 2020/2021

Date and time: November 2, 2020, 16.00-18.00h
Place: A. Jacobshal 02

Rules to follow:

- This is a closed book exam. Consultation of books and notes is not permitted. You can use a simple (non-programmable) calculator.
- Do not forget to write your name and student number onto each paper sheet. There are 2 exercises and you can reach 90 points.
ALWAYS include the relevant equation(s) and/or short descriptions.
- We wish you success with the completion of the exam!

START OF EXAM

1. Sample from the Exponential distribution. 40

Consider a random sample from the Exponential distribution with parameter $\theta>0$,

$$
X_{1}, \ldots, X_{n} \sim \operatorname{EXP}(\theta)
$$

The density and cumulative distribution function of the $\operatorname{EXP}(\theta)$ distribution are

$$
f_{\theta}(x)=\theta \cdot e^{-\theta x} \quad(x \geq 0) \quad \text { and } \quad F_{\theta}(x)=1-e^{-\theta x} \quad(x \geq 0)
$$

(a) Provide a sufficient statistic for $\theta .5$
(b) Derive the Method of Moments (MM) estimator 2 and show that the Maximum Likelihood (ML) estimator is $\hat{\theta}_{M L}=\frac{n}{\sum_{i=1}^{n} X_{i}} .2$ Confirm via the 2 nd derivative that $\hat{\theta}_{M L}$ is really a maximum point. 1
(c) Show that the expected Fisher information (for $n=1$) is $I(\theta)=\frac{1}{\theta^{2}} .5$
(d) Give the asymptotic distribution of the ML estimator. 5
(e) Assume $n=25$ and the mean realization: $\bar{X}_{25}=4$. Use your result from (d) to derive an asymptotic 2 -sided 90% confidence interval for $\theta .5$
(f) Assume $n=25$ and the testproblem $H_{0}: \theta=0.5 \underline{\mathrm{vs} .} H_{1}: \theta \neq 0.5$. Based on your result from (d), for which realisations \bar{X}_{25} would you reject H_{0} to the level $\alpha=0.05 ? 5$
(g) Give an equation for the q_{α} quantile of the $\operatorname{EXP}(\theta)$ distribution. 5
(h) Assume $n=1$ and the realization: $x_{1}=4$. Use your result from (g) to derive an exact 2 -sided 90% confidence interval for $\theta .5$

HINTS:

(1) For $X \sim \operatorname{EXP}(\theta)$ we have: $E[X]=\frac{1}{\theta}$ and $V(X)=\frac{1}{\theta^{2}}$.
(2) The Exponential distribution fulfills all regulatory conditions required for the asymptotic efficiency of the ML estimator.
(3) A table with quantiles of the standard Gaussian distribution is provided below.

2. Sample from the Gaussian distribution 50

We consider a sample from a Gaussian distribution: $X_{1}, \ldots, X_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ with density:

$$
f_{\mu, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{\sigma} \cdot \exp \left\{-\frac{1}{2} \cdot \frac{(x-\mu)^{2}}{\sigma^{2}}\right\} \quad(x \in \mathbb{R})
$$

We further assume that we know that $\mu=0$, while $\sigma^{2}>0$ is an unknown parameter.
(a) Show that $\sum_{i=1}^{n} X_{i}^{2}$ is a sufficient statistic for $\sigma^{2} .5$
(b) Compute the Maximum Likelihood (ML) estimator of $\sigma^{2} .5$

Check via the 2nd derivative whether you really have a maximum point. 5
Consider the simple test problem: $H_{0}: \sigma^{2}=1$ vs : $H_{1}: \sigma^{2}=4$.
(c) Compute the corresponding density ratio $W\left(X_{1}, \ldots, X_{n}\right):=\frac{f_{0,1}\left(X_{1}, \ldots, X_{n}\right)}{f_{0,4}\left(X_{1}, \ldots, X_{n}\right)} .5$
(d) Assume $n=5$ and give the rejection region of the uniform most powerful (UMP) test to the level $\alpha=0.05$.
Would the realization $\sum_{i=1}^{5} X_{i}^{2}=10$ lead to a rejection of H_{0} ? 5
(e) Indicate how to compute the power of the UMP test at $\sigma^{2}=4$. Given the quantiles below, explain why the power is in between 0.5 and 0.9 .5
(f) Assume $n=5$ and the realization: $W\left(X_{1}, \ldots, X_{5}\right)=0.3$.

Check whether H_{0} can be rejected to the test level $\alpha=0.05 .5$
Now consider the more general test problem: $H_{0}: \sigma^{2}=1$ vs : $H_{1}: \sigma^{2} \neq 1$.
(g) Show that the corresponding likelihood ratio test (LRT) statistic is of the form $\lambda\left(X_{1}, \ldots, X_{n}\right)=\left\{\hat{\sigma}_{M L}^{2}\right\}^{a} \cdot \exp \left\{-a \cdot \hat{\sigma}_{M L}^{2}+a\right\}$, where $a>0$ is a constant. 5
(h) For the sample size $n=5$ give the two-sided rejection region of the LRT to the test level $\alpha=0.1 .10$

HINTS:

(1) For $X_{1}, \ldots, X_{n} \sim \mathcal{N}(0,1) \Rightarrow X_{1}^{2}+\ldots+X_{n}^{2} \sim \chi_{n}^{2}$.
(2) A table with quantiles of the χ_{5}^{2} distribution is provided below.
(3) For $a>0$ the function $f(x)=x^{a} \cdot e^{-a x}$ is monotonically increasing for $0<x<1$ and monotonically decreasing for $x>1$.

α	0.025	0.05	0.1	0.5	0.9	0.95	0.975
$\mathcal{N}(0,1)$	-1.96	-1.64	-1.28	0	1.28	1.64	1.96
χ_{5}^{2}	0.83	1.15	1.61	4.35	9.24	11.07	12.83

Table 1: Quantiles q_{α} of the $\mathcal{N}(0,1)$ and the χ_{5}^{2} distribution.

